Quotients of Fermat curves and a Hecke character

نویسندگان

  • Bert van Geemen
  • Kenji Koike
  • Annegret Weng
چکیده

We explicitly identify infinitely many curves which are quotients of Fermat curves. We show that some of these have simple Jacobians with complex multiplication by a non-cyclotomic field. For a particular case we determine the local zeta functions with two independent methods. The first uses Jacobi sums and the second applies the general theory of complex multiplication, we verify that both methods give the same result. r 2004 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds of Multiplicative Character Sums with Fermat Quotients of Primes

Given a prime p, the Fermat quotient qp(u) of u with gcd(u, p)= 1 is defined by the conditions qp(u)≡ u p−1 − 1 p mod p, 0≤ qp(u)≤ p − 1. We derive a new bound on multiplicative character sums with Fermat quotients qp(`) at prime arguments `. 2010 Mathematics subject classification: primary 11A07; secondary 11L40, 11N25.

متن کامل

Short Character Sums with Fermat Quotients

The distribution of Fermat quotients and related sequences is interesting from several perspectives. First, there are several applications, in particular to algebraic number theory and computer science. Fermat quotients play for instance a role in primality testing (see [L]) and are well-studied as model for generating pseudo-random numbers. (See [COW].) From the analytical side, establishing d...

متن کامل

Some Non-congruence Subgroups and the Associated Modular Curves

In this paper, we study two families of normal subgroups of Γ0(2) with abelian quotients and their associated modular curves. They are similar to Fermat groups and Fermat curves in some aspects but very different in other aspects. Almost all of them are non-congruence subngroups. These modular curves are either projective lines or hyperelliptic curves. There are few modular forms of weight 1 fo...

متن کامل

Universal deformations, rigidity, and Ihara’s cocycle

In [Iha86b], Ihara constructs a universal cocycle Gal ( Q/Q ) −→ Zp[[t0, t1, t∞]]/ ((t0 + 1)(t1 + 1)(t∞ + 1)− 1) arising from the action of Gal ( Q/Q ) on certain quotients of the Jacobians of the Fermat curves

متن کامل

Eta-quotients and Elliptic Curves

In this paper we list all the weight 2 newforms f(τ) that are products and quotients of the Dedekind eta-function η(τ) := q ∞ Y n=1 (1− q), where q := e2πiτ . There are twelve such f(τ), and we give a model for the strong Weil curve E whose Hasse-Weil L−function is the Mellin transform for each of them. Five of the f(τ) have complex multiplication, and we give elementary formulae for their Four...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2005